令和2年度 第1回 札幌市 地震被害想定検討委員会

資料 6-3:地震動予測結果 (巻末資料)

令和2年10月8日

札幌市危機管理対策室

地震動の予測

1.	震源モデル	3
2.	地盤構造モデル	19
3.	強震動計算	27
4.	液状化の評価	45

1. 震源モデル

1.1 対象地震と巨視的断層パラメータ 4
1.2 アスペリティと破壊開始点の配置 8
1.3 海溝型地震の微視的断層パラメータ 9
1.4 内陸型(活断層)地震の微視的断層パラメータ 11
1.5 内陸型(伏在活断層)地震の微視的断層パラメータ 13

1.1.1 巨視的断層パラメータ修正案

R1年度に検討を行った③野幌丘陵断層帯で発生する地震と④月寒背斜に関連する断層で発生する地震に加え、①プレート内地震(苫小牧沖)と②石狩低地東縁断層帯主部についても 最新の知見を踏まえてパラメータを修正

No.		1		(2		3		1)	5		
震源名			プレート内地震 (苫小牧沖)		石狩低地東縁 断層帯主部		野幌丘陵断層帯		月 ま 背 お 月 ま 背 		西札幌背斜に 関連する断層	
検討年			H19被害 想定	修正案	H19被害 想定	修正案	H19被害 想定	修正案	H19被害 想定	修正案	H19被害 想定	修正案
モーメント マグニチュード	M _w	-	7.58	7.58	7.33	7.22	6.89	6.94	6.76	6.67	6.33	
気象庁 マグニチュード	M jma	-	7.5	7.5	7.9	7.9	7.45	7.52	7.28	7.16	6.73	
地震モーメント	M ₀	Nm	3.00E+20	3.00E+20	1.23E+20	8.38E+19	2.76E+19	3.28E+19	1.74E+19	1.26E+19	3.89E+18	
断層モデル 上端深さ	D ₀	km	130	130	北部:7 南部:7	北部:9 南部:9	6	6	6	6	5	
走行	θ	0	220	220	北部:14 南部:16	北部:14 南部:16	0	0	10	10	0	変更なし
傾斜角	δ	o	0	0	北部:45 南部:45	北部∶30 南部∶30	45	30	45	45	45	
断層長	L	km	42	44	北部:42 南部:26	北部∶42 南部∶26	32	32	28	28	16	
断層幅	W	km	22	24	北部:24 南部:24	北部:18 南部:18	22	24	20	17	16	
断層モデル 総面積	S	4 km²	924	1056	1487	1224	704	768	560	476	256	

※次ページに震源モデルの分布図を示す

【断層モデル修正による影響】

- ①プレート内地震(苫小牧沖)のパラメータは微修正にとどまっている。
- ②石狩低地東縁断層帯主部で発生する地震に関しては、震源距離が遠くなり、規模(モーメントマグニ チュードや地震モーメント)も若干小さくなっているため、H19年度被害想定と比べて地震動も相対的に 小さくなると考えられる。

1.1.1 巨視的断層パラメータ修正案

1.1.2 ①プレート内地震(苫小牧沖)の断層パラメータの修正案

【H19年度被害想定】

• 1974年苫小牧沖地震(M6.4)の震源位置に、1993年釧路沖タイプの地震(M7.5)を想定しており、笹谷 ほか(2006)を参考にパラメータの設定が行われている。

【修正案】

- ・地震本部が公表している平成28年版以降の「震源断層を特定した地震の強震動予測手法(「レシピ」)」には、スラブ内地震(プレート内地震)の特性化震源モデルの設定方法が示されるようになっており、これを踏まえて最新の「レシピ」(地震本部, 2020)の設定方法に従いパラメータを再設定する。
 (設定の基本的な流れはH19年度被害想定と変わらないため微修正となる)
- H19年度被害想定での設定値と同様に、地震モーメントはTakeo *et al.*(1993)とHarvard CMT解の1993 年釧路沖地震の平均値(3.00×10²⁰Nm)より与え、短周期レベルはIkeda *et al.*(2002)の1993年釧路沖 地震の値(2.00×10²⁰ Nm/s²)より与える。

1.1.3 ②石狩低地東縁断層帯主部の断層パラメータの修正案

【H19年度被害想定】

- •「石狩低地東縁断層帯の地震を想定した強震動評価について」(地震本部, 2004)でのモデルを使用 【修正案】
- 平成22年8月に石狩低地東縁断層帯の長期評価は改定されており、「全国地震動予測地図」に用いられる震源パラメータも「今後の地震動ハザード評価に関する検討~2011年・2012年における検討結果~」(地震本部, 2012)において更新されている。これを踏まえ、2012年版以降の「全国地震動予測地図」において設定されているパラメータに更新する。
- 上記のモデルには「モデルA:レシピ通りの地震モーメント」と「モデルB:面積が重なった分の地震モーメントを小さくする」のモデルがあるが、地震規模の大きいモデルAを使用する。

(「今後の地震動ハザード評価に関する検討~2011年・2012年における検討結果~」(地震本部, 2012)より引用・加筆)

1.2 アスペリティと破壊開始点の配置

★:破壞開始点 :アスペリティまたはSMGA :断層面 ——:断層面上端 H19年度被害想定 本検討 ①プレート内地震 北東 南西 南西 北東 南西 北東 (苫小牧沖) $M_{\rm jma}$ 7.5 ケース数:1 **ケース数**:2 ②石狩低地東縁 南 北 断層帯主部 北 南 $M_{\rm ima}$ 7.9 北 南 ケース数:3 ケース数:4 ③野幌丘陵断層 北 北 南 南 北南 北南 帯 $M_{\rm jma}$ 7.52 ケース数:3 ケース数:3 ④月寒背斜に関 北 北 北 北 南 南 南 南 連する断層 $M_{\rm ima}$ 7.16 ケース数:3 ケース数:3 ⑤西札幌背斜に 北 北 南 南 関連する断層 $M_{\rm ima} 6.73$ ケース数:1 ケース数:3

1.3 海溝型地震の微視的断層パラメータ

【微視的震源パラメータの設定方針】

- ・巨視的パラメータ同様、最新の「震源断層を特定した地震の強震動予測手法(「レシピ」)」(地震本部, 2020)の「1.3 スラブ内地震の特性化震源モデル」の設定方法に従い再設定する。
- ・ 強震動生成領域(SMGA)は2つ配置することとし、北東側に主SMGAを配置したモデル1
 と、南西側に主SMGAを配置したモデル2を設定する。
- 破壊開始点は、正断層であることを踏まえて下端中央に配置し、主SMGAから破壊が開始するケースのみを検討対象とする。

【(参考) H19年度被害想定での計算ケース】

• SMGAの配置は1モデルのみで、1ケースの破壊開始点が設定されている。

1.3.1 ①プレート内地震(苫小牧沖)

巨視的震	源パラメータ				設定根拠
断層モデ	ル総面積	${\cal S}_{\sf model}$	4 km ²	1056	$S_{model} = \Sigma S_{seg}$
					平成19年度被害想定設定値より
地震モーク	メント	Mo	Nm	3.00E+20	:Takeo et al.(1993)とHarvard CMT解の1993年釧 路沖地震の平均値
モーメント	マグニチュード	M _w	-	7.58	$M_{\rm w}$ =(log M_0 -9.1)/1.5
気象庁マ	ゲニチュード	M _{jma}	-	7.5	1993年釧路沖地震(気象庁)
静的応力	降下量	$\Delta \sigma$	MPa	21.30	$\Delta \sigma = (7/16) * M_0 / R^3$
平均すべ	り量	$D_{\rm model}$	m	4.16	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$
短周期レベル		A	Nm/s²	2.00E+20	平成19年度被害想定設定値より :Ikeda et al.(2002)の1993年釧路沖地震の値
新國エデ	山. 佰占(卅炅測地玄)	Lat	•	42.6077	日本測地系の値とり質出
的宿しが	で尿点(色外風地水)	Lon	0	142.2554	ロ本別地示の値より昇山
新屋エデル 原占(日本測地系)		Lat	0	42.6052	亚成10年度被害相党設定値太参考に設定
的唐てノ	心尿点(口本测地术)	Lon	0	142.2592	十成19年度被告応定設定値を参考に設定
走行		θ	0	220.0	平成19年度被害想定設定値より
傾斜角		δ	°	0	平成19年度被害想定設定値より
すべり角		r	0	-90	正断層
断層モデ	ル上端深さ	D_{0_seg}	km	130	平成19年度被害想定設定値より
単位区間	長さ	L_{seg}	km	44	畑わ/ ・ノル/ -0.1にたるとうに訳字
単位区間	幅	W _{seg}	km	24	10442 _{seg} : W _{seg} -2.11-43のよりに改定
単位区間面積		${\cal S}_{ ext{seg}}$	4 km²	1056	S _{model} =(49π ⁴ β ⁴ M ₀ ²)/(16A ² S _a)=1058.6km ² を目安 にS _{ear} =L _{ear} *W _{ear} より設定
単位区間	単位区間地震モーメント		Nm	3.00E+20	1区間のみ: M _{0 seg} =M ₀
単位区間	平均すべり量	D _{seg}	m	4.16	1区間のみ:D _{seg} =D _{model}
微視的震	源パラメータ				
	面積	Sa	4 km²	260.01	<i>S</i> _a =1.25*10 ⁻¹⁶ *(<i>M</i> ₀ *10 ⁷) ^{2/3} :笹谷ほか(2006)
A01404	平均すべり量	Da	m	8.33	$D_{a} = \gamma D_{seg}, \ \gamma = 2.0$
±SMGA	実行応力	σa	MPa	86.50	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$
	地震モーメント	<i>М</i> _{0_а}	Nm	1.48E+20	$M_{0,a} = \mu D_a S_a$
	面積	${\cal S}_{{\sf a}1}$	4 km ²	173.34	$S_{a1}=2/3*S_{a}$
SMGA①	平均すべり量	D _{a1}	m	9.23	$D_{a1} = ((r_1/r)/(\sum (r_1/r)^3)) * D_a$
	実行応力	σ_{a1}	MPa	86.50	$\sigma_{a1} = \sigma_{a}$
	面積	${\cal S}_{\sf a2}$	4 km²	86.67	S _{a2} =1/3*S _a
SMGA2	平均すべり量	D _{a2}	m	6.52	$D_{a2} = ((r_2/r)/(\sum (r_1/r)^3)) * D_a$
	実行応力	σ_{a2}	MPa	86.50	$\sigma_{a2} = \sigma_{a}$
	面積	${\cal S}_{ m b}$	4 km²	795.99	$S_{b} = S_{seg} - S_{a}$
ᆂᇢᄶᅷ	平均すべり量	D _b	m	2.80	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$
育京領域	実行応力	$\sigma_{\rm b}$	MPa	10.65	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$
	地震モーメント	<i>M</i> _{0_b}	Nm	1.52E+20	$M_{0,b} = M_{0,seg} - M_{0,a}$
その他					
S波速度		β	km/s	4.5	産総研(2009):深度100km面以深
密度		ρ	g/cm ³	3.37	産総研(2009):深度100km面以深
剛性率		μ	N/m^2	6.82E+10	$\mu = \rho \beta^2$
破壊伝播	速度	V _r	km/s	3.24	$V_{\rm t}$ =0.72 $\times \beta$: Geller (1976)
高周波遮	新周波数	f _{max}	Hz	13.5	地震調査委員会(2003, 2004)

【モデル1】

1.4 内陸型(活断層)地震の微視的断層パラメータ

【微視的震源パラメータの設定方針】

- 巨視的パラメータ同様、2012年版以降の「全国地震動予測地図」(現時点での最新は 2018年版)において設定されているパラメータを基本的に使用する。
- ただし、断層面におけるS波速度βおよび密度ρについては使用する深部地盤モデル(産総研、2009)の「基盤岩類~コンラッド面」の値とし、それに伴うパラメータ(平均すべり量 Dなど)を修正する。
- 破壊開始点について、「全国地震動予測地図2018年版」(地震本部, 2018)では6ケースが想定されているが、北部セグメントについては、2つ設定されているアスペリティのうち主アスペリティから破壊が開始するケースのみを検討対象とする。

【(参考) H19年度被害想定での計算ケース】

•アスペリティの配置は1モデルのみで、3ケースの破壊開始点が設定されている。

1.4.1 ②石狩低地東縁断層帯主部

巨視的意	「源パラメータ			北部	南部	設定根拠		
断層モデ	ル総面積	${\cal S}_{\sf model}$	4 km²	12	24	$S_{model} = \Sigma S_{seg}$		
地震モー	メント	M ₀	Nm	8.38	E+19	log <i>M</i> ₀ =1.17 <i>M</i> _{jma} +10.72		
モーメント	マグニチュード	M _w	-	7.2	22	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$		
気象庁マ	グニチュード	<i>M</i> _{jma}	-	7.9		<i>M_{jma}=</i> (log <i>L</i> +2.9)/0.6 ※長期評価断層長 <i>L</i> =66km		
静的応力	降下量	Δσ	MPa	4.7	17	$\Delta \sigma = (7/16) * M_0 / R^3$		
平均すべ	り量	D _{model}	m	2.1	14	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$		
短周期レ	ベル	A	Nm/s²	2.32	E+19	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$		
ᄣᄝᅮᆕ	1 匠上(井田別本玄)	Lat	٥	42.9	692	L SUIS2010포크비·ᄠᄝᅎᄂᄲᇝᄝ曲ᆂ		
町唐モナ	ル原県(但芥測地茶)	Lon	٥	141.	9148	-3-SHIS2018モナル:断層面工端の屈曲点		
ᄣᄝᅮᆕ	1 匠上(口士测地系)	Lat	٥	42.9	667	世界週期があったとし答点		
町唐モナ	ル原県(ロ本測地系)	Lon	٥	141.9	9185	世介測地系の値より昇出		
走行		θ	0	14.0	164.0	長期評価の端点を結ぶ方向		
傾斜角		δ	0	30	150	東傾斜		
すべり角		r	0	90	90	逆断層		
断層モデ	ル上端深さ	D _{0_seg}	km	9	9	J-SHIS2018モデル		
単位区間	長さ	L_{seg}	km	42	26	J-SHIS2018モデル		
単位区間	幅	$W_{\rm seg}$	km	18	18	※ S=4.24*10 ⁻¹¹ *(M ₀ *10 ⁷) ^{1/2} =1227km ² を目安に設		
単位区間	面積	${\cal S}_{ m seg}$	4 km ²	756	468	定された値		
単位区間	地震モーメント	M_{0_seg}	Nm	5.63E+19	2.74E+19	単位区間面積の1.5乗に比例して配分		
単位区間	平均すべり量	D_{seg}	m	2.33	1.83	$D_{seg} = M_{0_seg} / (\mu S_{seg})$		
微視的意	源パラメータ			北部	南部			
	面積	S	km ²	425	.03	$S_a = \pi r^2$		
クアフ ペ		U a	KIII	262.52	162.51	単位区間面積に比例して配分		
エノスへ	平均すべり量	Da	m	4.65	3.66	$D_{a} = \gamma D_{seg}, \gamma = 2.0$		
	実行応力	σ_{a}	MPa	13.	72	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$		
	地震モーメント	<i>М</i> _{0_а}	Nm	3.91E+19	1.91E+19	$M_{0_a} = \mu D_a S_a$		
マフペリ	面積	${\cal S}_{a1}$	4 km ²	175.01	162.51	北部: S _{a1} =2/3*S _a , 南部: S _{a1} =S _a		
ティ①	平均すべり量	D _{a1}	m	5.16	3.66	$D_{a1} = ((r_1/r)/(\Sigma(r_i/r)^3)) * D_a$		
, 10	実行応力	σ_{a1}	MPa	13.72	13.72	$\sigma_{a1} = \sigma_{a}$		
アフペリ	面積	${\cal S}_{\sf a2}$	4 km ²	87.51	-	北部: S _{a2} =1/3*S _a , 南部: S _{a2} =0		
ティク	平均すべり量	D _{a2}	m	3.65	-	$D_{a2} = ((r_2/r)/(\Sigma(r_i/r)^3)) * D_a$		
10	実行応力	σ_{a2}	MPa	13.72	-	$\sigma_{a2} = \sigma_{a}$		
	面積	${\cal S}_{b}$	4 km²	493.48	305.49	$S_{b} = S_{seg} - S_{a}$		
兆롣絔냆	平均すべり量	Db	m	1.09	0.86	$D_{\rm b} = M_{0\rm b}/(\mu S_{\rm b})$		
日泉庾残	実行応力	$\sigma_{\rm b}$	MPa	2.13	2.27	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$		
地震モーメント		<i>M</i> _{0_b}	Nm	1.72E+19	8.38E+18	$M_{0_{b}} = M_{0_{seg}} - M_{0_{a}}$		
その他								
S波速度		β	km/s	3	.4	産総研(2009):基盤岩類~コンラッド面		
密度		ρ	g/cm ³	2.	77	産総研(2009):基盤岩類~コンラッド面		
剛性率		μ	N/m^2	3.20	E+10	$\mu = \rho \beta^2$		
破壊伝播	速度	V _r	km/s	2.4	45	V _t =0.72*β : Geller (1976)		
高周波遮	断周波数	fmax	Hz	6.	0	地震調査委員会強震動評価部会(2001)		

1.5 内陸型(伏在活断層)地震の微視的断層パラメータ

【微視的震源パラメータの設定方針】

- 最新の「震源断層を特定した地震の強震動予測手法(「レシピ」)」(地震本部, 2020)の
 「1.1 活断層で発生する地震の特性化震源モデル」の設定方法に従い設定する。
- ③ 野幌丘陵断層帯および④月寒背斜に関連する断層については、発生する地震規模が比較的大きい(M_j≧7.0)ことから、アスペリティが1つのみのモデル1に加えて、アスペリティを2つ設定したモデル(南側に主アスペリティを配置したモデル2と、北側に主アスペリティを配置したモデル2と、北側に主アスペリティを配置したモデル3)を設定する。
- ⑤西札幌背斜に関連する断層はアスペリティ1つのモデルのみ設定する。
- 破壊開始点は逆断層であることを踏まえて下端中央に配置し、アスペリティが2つあるモデルについては主アスペリティから破壊が開始するケースのみを検討対象とする。

【(参考) H19年度被害想定での計算ケース】

 各地震のアスペリティの配置は1モデルのみで、それぞれ3ケースの破壊開始点が設定 されている。

月寒背斜に関連する断層

西札幌背斜に関連する断層

1.5.1 ③野幌丘陵断層帯

					モデル1:アスペリティー数1		モデル2&3:アスペリティー数2	
巨視的意	ŧ源パラメータ				設定根拠		設定根拠	
断層モデ	ル総面積	${\cal S}_{\sf model}$	4 km ²	768	$S_{model} = \Sigma S_{seg}$	768	$S_{model} = \Sigma S_{seg}$	
地震モー	メント	M ₀	Nm	3.28E+19	$M_0 = ((S_{\text{model}} / 4.24) * 10^{11})^2 * 10^{-7}$	3.28E+19	$M_0 = ((S_{\text{model}} / 4.24) * 10^{11})^2 * 10^{-7}$	
モーメント	・マグニチュード	M _w	-	6.94	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.94	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	
気象庁マ	グニチュード	M _{jma}	-	7.52	$\log M_0 = 1.17 M_{\rm jma} + 10.72$	7.52	$\log M_0 = 1.17 M_{\rm jma} + 10.72$	
静的応力	降下量	Δσ	MPa	3.76	$\Delta \sigma = (7/16) * M_0 / R^3$	3.76	$\Delta \sigma = (7/16) * M_0 / R^3$	
平均すべり量 D _{model} m		m	1.33	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$	1.33	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$		
短周期レ	ベル	A	Nm/s ²	1.70E+19	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	1.70E+19	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	
ミロトリ	1 匠上(井田別地衣)	Lat	0	42.9413		42.9413		
町唐モナ	ル原県(但芥測地茶)	Lon	0	141.5355	ロ本測地系の値より昇山	141.5355	ロ本測地系の値より昇山	
ミロトリ	1 匠上(口士测地衣)	Lat	0	42.9388	亚式10年度神宝相空恐空体上1	42.9388		
町唐モナ	ル原品(日本測地系)	Lon	٥	141.5392	平成19年度被告您定該定値より	141.5392	平成19年度被告您定該定個より	
走行		θ	0	0.0	令和1年度検証業務報告書より	0.0	令和1年度検証業務報告書より	
傾斜角		δ	0	30	令和1年度検証業務報告書より	30	令和1年度検証業務報告書より	
すべり角		r	0	90	逆断層	90	逆断層	
断層モデ	ル上端深さ	D _{0_seg}	km	6	令和1年度検証業務報告書より	6	令和1年度検証業務報告書より	
単位区間	長さ	L_{seg}	km	32	令和1年度検証業務報告書より	32	令和1年度検証業務報告書より	
単位区間	幅	W _{seg}	km	24	令和1年度検証業務報告書より	24	令和1年度検証業務報告書より	
単位区間	面積	${\cal S}_{ m seg}$	4 km ²	768	S_{seg} = L_{seg} * W_{seg}	768	$S_{seg} = L_{seg} * W_{seg}$	
単位区間地震モーメント M _{0_seg} Nm		3.28E+19	1区間のみ:M _{0.seg} =M ₀	3.28E+19	1区間のみ:M _{0.seg} =M ₀			
単位区間	平均すべり量	D_{seg}	m	1.33	1区間のみ:D _{seg} =D _{model}	1.33	1区間のみ:D _{seg} =D _{model}	
微視的意	「源パラメータ							
	面積	${\cal S}_{\sf a}$	4 km²	194.09	$S_a = \pi r^2$	194.09	$S_a = \pi r^2$	
全アスペ	平均すべり量	Da	m	2.67	$D_{a} = \gamma D_{seg}, \gamma = 2.0$	2.67	$D_{a} = \gamma D_{seg}, \gamma = 2.0$	
リティ	実行応力	σ_{a}	MPa	14.86	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$	14.86	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$	
	地震モーメント	<i>М</i> _{0_а}	Nm	1.66E+19	$M_{0_a} = \mu D_a S_a$	1.66E+19	$M_{0_a} = \mu D_a S_a$	
	面積	${\cal S}_{a1}$	4 km²	194.09	アスペリティ1つ: S _{a1} =S _a	129.40	$S_{a1}=2/3*S_{a}$	
アスヘリ	平均すべり量	D _{a1}	m	2.67	アスペリティ1つ: <i>D</i> _{a1} = <i>D</i> _a	2.96	$D_{a1} = ((r_1/r)/(\sum (r_i/r)^3)) * D_a$	
74	実行応力	σ_{a1}	MPa	14.86	$\sigma_{a1} = \sigma_{a}$	14.86	$\sigma_{a1} = \sigma_{a}$	
	面積	${\cal S}_{\sf a2}$	4 km ²	-	-	64.70	$S_{a2}=1/3*S_a$	
アスペリ	平均すべり量	D_{a2}	m	-	_	2.09	$D_{a2} = ((r_2/r)/(\sum (r_i/r)^3)) * D_a$	
110	実行応力	σ_{a2}	MPa	-	-	14.86	$\sigma_{a2} = \sigma_{a}$	
	面積	${\cal S}_{\tt b}$	4 km ²	573.91	$S_{b} = S_{seg} - S_{a}$	573.91	$S_{b} = S_{seg} - S_{a}$	
ᆂᇢᄶᆄ	平均すべり量	D _b	m	0.88	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$	0.88	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$	
育京領域	実行応力	σ_{b}	MPa	2.85	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$	2.10	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$	
	地震モーメント		Nm	1.62E+19	$M_{0,b} = M_{0,seg} - M_{0,a}$	1.62E+19	$M_{0_{\rm b}} = M_{0_{\rm seg}} - M_{0_{\rm a}}$	
その他								
S波速度		β	km/s	3.4	産総研(2009):基盤岩類~コンラッド面	3.4	産総研(2009):基盤岩類~コンラッド面	
密度		ρ	g/cm ³	2.77	産総研(2009):基盤岩類~コンラッド面	2.77	産総研(2009):基盤岩類~コンラッド面	
剛性率		μ	N/m^2	3.20E+10	$\mu = \rho \beta^2$	3.20E+10	$\mu = \rho \beta^2$	
破壊伝播	速度	Vr	km/s	2.45	$V_{t}=0.72*\beta$: Geller (1976)	2.45	$V_{t}=0.72*\beta$: Geller (1976)	
高周波遮	断周波数	f _{max}	Hz	6.0	地震調査委員会強震動評価部会(2001)	6.0	地震調査委員会強震動評価部会(2001)	

1.5.1 ③野幌丘陵断層帯

【モデル1】

【モデル2】

【モデル3】

1.5.2 ④月寒背斜に関連する断層

					モデル1:アスペリティー数1	モデル2&3:アスペリティー数2		
巨視的震	源パラメータ				設定根拠		設定根拠	
断層モデ	ル総面積	${\cal S}_{\sf model}$	4 km ²	476	$S_{model} = \Sigma S_{seg}$	476	$S_{model} = \Sigma S_{seg}$	
地震モー	メント	M ₀	Nm	1.26E+19	$M_0 = ((S_{\text{model}} / 4.24) * 10^{11})^2 * 10^{-7}$	1.26E+19	$M_0 = ((S_{\text{model}} / 4.24) * 10^{11})^2 * 10^{-7}$	
モーメント	マグニチュード	M _w	-	6.67	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.67	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	
気象庁マ	グニチュード	M _{jma}	-	7.16	$\log M_0 = 1.17 M_{\rm jma} + 10.72$	7.16	$\log M_0 = 1.17 M_{\rm jma} + 10.72$	
静的応力	降下量	$\Delta \sigma$	MPa	2.96	$\Delta \sigma = (7/16) * M_0 / R^3$	2.96	$\Delta \sigma = (7/16) * M_0 / R^3$	
平均すべり量 D _{model}		m	0.83	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$	0.83	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$		
短周期レ	ベル	A	Nm/s ²	1.23E+19	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	1.23E+19	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	
新國エデ	山.盾占(卅贯測地玄)	Lat	۰	42.9634	ロ太測地系の値とし質用	42.9634	ロ太測地系の値とし質出	
町唐てノ	70尿点(但外测地术)	Lon	٥	141.3753	日本別地示の他より昇山	141.3753		
新國エデ	山.盾占(日太測州玄)	Lat	۰	42.9610		42.9610		
町唐てノ	72尿点(口平测地术)	Lon	٥	141.3790	十成日午及初日応定設定値より	141.3790	十次19年度被告応定設定値より	
走行		θ	٥	10.0	令和1年度検証業務報告書より	10.0	令和1年度検証業務報告書より	
傾斜角		δ	0	45	令和1年度検証業務報告書より	45	令和1年度検証業務報告書より	
すべり角		r	٥	90	逆断層	90	逆断層	
断層モデ	ル上端深さ	D_{0_seg}	km	6	令和1年度検証業務報告書より	6	令和1年度検証業務報告書より	
単位区間	長さ	L_{seg}	km	28	令和1年度検証業務報告書より	28	令和1年度検証業務報告書より	
単位区間	幅	W _{seg}	km	17	令和1年度検証業務報告書より	17	令和1年度検証業務報告書より	
単位区間	単位区間面積 S _{seg} km ²		476	$S_{seg} = L_{seg} * W_{seg}$	476	$S_{seg} = L_{seg} * W_{seg}$		
単位区間地震モーメント M _{0.seg} Nm		Nm	1.26E+19	1区間のみ: M _{0_seg} =M ₀	1.26E+19	1区間のみ:M _{0.seg} =M ₀		
単位区間	平均すべり量	D_{seg}	m	0.83	1区間のみ:D _{seg} =D _{model}	0.83	1区間のみ:D _{seg} =D _{model}	
微視的震	源パラメータ							
	面積	${\cal S}_{\sf a}$	4 km ²	87.45	$S_a = \pi r^2$	87.45	$S_a = \pi r^2$	
全アスペ	平均すべり量	Da	m	1.65	$D_{a} = \gamma D_{seg}, \gamma = 2.0$	1.65	$D_{a} = \gamma D_{seg}, \gamma = 2.0$	
リティ	実行応力	σ_{a}	MPa	16.09	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$	16.09	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$	
	地震モーメント	<i>M</i> _{0_a}	Nm	4.63E+18	$M_{0,a} = \mu D_a S_a$	4.63E+18	$M_{0_a} = \mu D_a S_a$	
777 e° 11	面積	${\cal S}_{a1}$	4 km ²	87.45	アスペリティ1つ: <i>S</i> a1= <i>S</i> a	58.30	$S_{a1}=2/3*S_{a}$	
アスヘリ	平均すべり量	D _{a1}	m	1.65	アスペリティ1つ: Da1=Da	1.83	$D_{a1} = ((r_1/r)/(\sum (r_i/r)^3)) * D_a$	
710	実行応力	σ_{a1}	MPa	16.09	$\sigma_{a1} = \sigma_{a}$	16.09	$\sigma_{a1} = \sigma_{a}$	
	面積	${\cal S}_{\sf a2}$	4 km ²	-	_	29.15	$S_{a2}=1/3*S_{a}$	
アスヘリ	平均すべり量	D_{a2}	m	-	-	1.30	$D_{a2} = ((r_2/r)/(\sum (r_i/r)^3)) * D_a$	
116	実行応力	σ_{a2}	MPa	-	-	16.09	$\sigma_{a2} = \sigma_{a}$	
	面積	${\cal S}_{b}$	4 km ²	388.55	$S_{b}=S_{seg}-S_{a}$	388.55	$S_{b}=S_{seg}-S_{a}$	
兆로ᄶᆄ	平均すべり量	D _b	m	0.64	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$	0.64	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$	
月京限以	実行応力	$\sigma_{\rm b}$	MPa	3.43	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$	2.53	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$	
	地震モーメント	<i>М</i> _{0_b}	Nm	7.97E+18	$M_{0,b} = M_{0,seg} - M_{0,a}$	7.97E+18	$M_{0,b}=M_{0,seg}-M_{0,a}$	
その他								
S波速度		β	km/s	3.4	産総研(2009):基盤岩類~コンラッド面	3.4	産総研(2009):基盤岩類~コンラッド面	
密度		ρ	g/cm ³	2.77	産総研(2009):基盤岩類~コンラッド面	2.77	産総研(2009):基盤岩類~コンラッド面	
剛性率		μ	N/m^2	3.20E+10	$\mu = \rho \beta^2$	3.20E+10	$\mu = \rho \beta^2$	
破壊伝播	速度	V _r	km/s	2.45	V_{t} =0.72 $\star\beta$: Geller (1976)	2.45	$V_{t}=0.72 * \beta$: Geller (1976)	
高周波遮	断周波数	f _{max}	Hz	6.0	地震調査委員会強震動評価部会(2001)	6.0	地震調査委員会強震動評価部会(2001)	

1.5.2 ④月寒背斜に関連する断層

17

1.5.3 ⑤西札幌背斜に関連する断層

巨視的震	源パラメータ				設定根拠
断層モデ	ル総面積	${\cal S}_{\sf model}$	4 km²	256	$S_{model} = \Sigma S_{seg}$
地震モー	メント	M ₀	Nm	3.89E+18	$M_0 = ((S_{\text{model}}/2.23) * 10^{15})^{3/2} * 10^{-7}$
モーメント	マグニチュード	M _w	-	6.33	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$
気象庁マ	グニチュード	M _{jma}	-	6.73	log <i>M</i> ₀ =1.17 <i>M</i> _{jma} +10.72
静的応力	降下量	$\Delta \sigma$	MPa	2.31	$\Delta \sigma = (7/16) * M_0 / R^3$
平均すべ	り量	D_{model}	m	0.47	$D_{\text{model}} = M_0 / (\mu S_{\text{model}})$
短周期レ	ベル	A	Nm/s²	8.33E+18	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
新國エー	1. 百占(井田河神玄)	Lat	0	43.0637	日本測地系の値とは質出
的宿亡人	72家总(但外测地术)	Lon	٥	141.2816	
新國ナデ	山盾占(日太測地系)	Lat	٥	43.0613	
的宿しり	72尿点(口本例地汞)	Lon	٥	141.2853	十次19年度版音応定設定値より
走行		θ	۰	0.0	令和1年度検証業務報告書より
傾斜角		δ	٥	45	令和1年度検証業務報告書より
すべり角		r	٥	90	逆断層
断層モデ	ル上端深さ	Dep	km	5	令和1年度検証業務報告書より
単位区間	長さ	L _{seg}	km	16	令和1年度検証業務報告書より
単位区間	幅	W _{seg}	km	16	令和1年度検証業務報告書より
単位区間	面積	${\cal S}_{ m seg}$	4 km ²	256	$S_{seg} = L_{seg} * W_{seg}$
単位区間	地震モーメント	<i>M</i> _{0_seg}	Nm	3.89E+18	1区間のみ: M _{0_seg} =M ₀
単位区間	平均すべり量	D_{seg}	m	0.47	1区間のみ:D _{seg} =D _{model}
微視的震	源パラメータ				
	面積	Sa	4 km ²	33.91	$S_a = \pi r^2$
全アスペ	平均すべり量	Da	m	0.95	$D_a = \gamma D_{seg}, \gamma = 2.0$
リティ	実行応力	σ_{a}	MPa	17.46	$\Delta \sigma_{a} = (S_{model} / S_{a}) * \Delta \sigma, \sigma_{a} = \Delta \sigma_{a}$
	地震モーメント	<i>M</i> _{0_a}	Nm	1.03E+18	$M_{0_a} = \mu D_a S_a$
アフペリ	面積	${\cal S}_{a1}$	4 km ²	33.91	アスペリティ1つ: <i>S</i> ai= <i>S</i> a
フスペリ ティ①	平均すべり量	D _{a1}	m	0.95	アスペリティ1つ: <i>D</i> _{a1} = <i>D</i> _a
	実行応力	σ_{a1}	MPa	17.46	$\sigma_{a1} = \sigma_{a}$
アスペリ	面積	${\cal S}_{a2}$	4 km²	-	-
ティ2	平均すべり量	D_{a2}	m	-	-
	実行応力	σ_{a2}	MPa	-	-
	面積	${\cal S}_{\rm b}$	4 km²	222.09	$S_{b} = S_{seg} - S_{a}$
背暑領域	平均すべり量	D _b	m	0.40	$D_{\rm b} = M_{0,\rm b} / (\mu S_{\rm b})$
H JA IRA	実行応力	$\sigma_{\tt b}$	MPa	2.69	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) * (\pi^{1/2}/D_{\rm a}) * r * \sigma_{\rm a} * \Sigma (r_{\rm i}/r)^3$
	地震モーメント	<i>M</i> _{0_b}	Nm	2.86E+18	$M_{0_b} = M_{0_seg} - M_{0_a}$
その他					
S波速度		β	km/s	3.4	産総研(2009):基盤岩類~コンラッド面
密度		ρ	g/cm ³	2.77	産総研(2009):基盤岩類~コンラッド面
剛性率		μ	N/m ²	3.20E+10	$\mu = \rho \beta^2$
破壊伝播	速度	V _r	km/s	2.45	V _t =0.72*β :Geller (1976)
高周波遮	新周波数	f	Hz	60	地震調査委員会強震動評価部会(2001)

小断層メッシュサイズ: 長さ2km×幅2km

2. 地盤構造モデル

- 2.1 深部地盤構造モデル 20
- 2.2 浅部地盤構造モデル 21

2.1.3 深部地盤モデルの更新(深さ分布)

やや左上の囲んだ部分が札幌市。勇払平野で深く、札幌市では東部が深い。

2.2 浅部地盤構造モデル

2.2.1 土質分類·地盤物性 22

2.2.1 浅部地盤モデルの土質分類・地盤物性(平成19年度想定)

ボーリングデータの処理 ①土質を下表に従って分類 ②N値・層厚をデータからモデル化 ③Vs、単重、動的変形を当てはめる

※浅部地盤構造モデルのS波速度は、
 太田・後藤(1978)の換算式を用いて算出。
 Vs(m/s)=62.48・N値^{0.218}・H^{0.218}・F
 H:深度(m)

F:(粘土;1.000,砂;1.073,礫;1.199)

土質·N值·単位体積重量:防災科学技術研究所(2005)

土質名	記号	N値	単位体積重量 (kN/m ³)	Vs推定 動的変形特性
	B1	0~4	16	
埋土	B2	4~10	17	砂
	B3	10~	20	
应墙十	p1	0~1	12	*F+
加加加	p2	1~	13	和上
ローム・	lm 1	0~4	14	*
凝灰質粘土	lm2	4~	15	和上
	c1	0~2	14	CHARGE AND
	c2	2~4	15	
* + ++	c3	4~8	16	**
柏庄工	c4	8~15	17	柏上
	c5	15~30	18	教育部分の行う
	c6	30~	18	
	s1	0~4	17	
	s2	4~10	18	
砂質土	s3	10~30	19	砂
	s4	30~50	19	
	s5	50~	20	
	g1	~20	19	
减雪+	g2	20~30	20	Teh Titt
床貝上	g3	30~50	20	的保
Ī	g4	50~	21	

土質コード等(平成19年度モデル)

土質分類	シェイク用土質コー	※状化用土質⊐ー	平均粒径		細粒分含有	Ŧ	地下水位画上の単位体積重 費	地下水位面下の単位体 量	時重	地下水位面下の有効単位体積重量	S液速度		非線形特性	平均S波速度
	-	r i	D _{sg} (mm)		FC(%)		?"t₁(kN/m")	γt _f (kN/m3)		7 'te(kN/m3)	Vs(m/sec)		and a state	Vs(m/sec)
粘土		1	-	-	-	-		送却地盤機造モデルよ					中央防災会議	
5164	1	2	0.0325	*1	70	-	γt _z -2.0	り (N値と土質区分) [粘性土]	*4	γt ₂ -10	Vs=62.48*N值 ⁹²¹⁶ *H ⁹²¹⁶ *1.000 [土質区分:粘土] *5		「東海地震に関する専門調査 会」 (土質区分:粘性土)	157
砂質シルト						-						-		
シルト質細砂														
微細砂								浅部地量構造モデルよ					中央防災会議	
\$814)	2	3	0.15	*1	30	-	γt ₂ -2.0	り (N値と土質区分)	*4 Y t2-1	$\gamma t_2 - 10$	γt ₂ -10 Va=6248eN値 ²³¹⁵ efl ²³¹⁵ e	「東海地震に関する専門調査 会」	224	
# Ø	1							(砂質土)					〔土質区分:砂質土〕	
粗砂														
68	3	4	2	*1	0		2t-20	浅郡地 塗模造 モデルよ り	-4	x+ -10	Vs=62.48+N值 ^{3,218} +H ^{3,218} +1.199	+5	中央防災会議	207
慶土 (砂験相当)	7	8	2		U		1 9 2.0	(N値と土質区分) 【礫貫土】		7 62 10	〔土質区分:嶺〕	+0	金」[土質医分:確質土]	291
火山灰	4	5	0.02~0.5	*2	50~100 (41)	*5 (*2)	γt ₂ −2.0	 浅都地量構造モデルより (N値と土質区分) (砂質土として算出) 	*4	γ t ₂ ~10	V#=7.74+N值+81.9 〔既往S波遠度後居結果より〕	*6	中央防災金縄 「東海地震に関する専門調査 会」 (土質区分:砂質土)	297
泥炭	6	7	-	-	-	-	γt ₂ −2.0	11	*3	γt₂-10	一律、100m/sec 【既往S波速度検層結果より】	*7	能登·熊谷(1986) 時松-開口(2006)	-
岩堂	5	6	-	-	-	-	γt ₂ −2.0	21 (確實土でN値50)	*4	γ t ₂ -10	300m/sec (UNP暦の値)	-	中失防災会議 「東海地震に関する専門調査 会」 [土賞区分:砂質土]	-
火山灰黄臺土	10	10	0.05~05	*2	42	*2	7 t ₂ -2.0	16	*2	γ t ₂ -10	一律120m/sec	*8	千葉県逐山市の例	-
UNP	0	0	-	-	-	-	γ t ₂ -2.0	21 (確實土でN値50)	*4	γt ₂ -10	300m/sec	*9	中失防災金維 「東海地震に関する専門調査 会」 〔土賞区分:砂質土〕	

±	質 分	類	地下水位面下の単 位重量γ ₁₂ (kN/m ³)	地下水位面上の単 位重量 _{γ11} (kN/m ³)	平均粒径 D ₅₀ (mm)	細粒分含有率 FC (%)			
表		土	17.0	15.0	0.02	80			
シ	N	ト	17.5	15, 5	15.5 0.025				
砂質	買シノ	レト	18.0	16.0	0.04	65			
シル	ト質	細砂	18.0	16.0	0.07	50			
微	細	砂	18, 5	16.5	0.1	40			
細		砂	19.5	17.5	0.15	30			
中		砂	20, 0	18.0	0, 35	10			
粗		砂	20.0	18.0	0.6	0			
砂	n	れき 21.0 19.0 2.				0			

*1 道路橋示方書-耐震設計編-(平成14年度版);各土質区分の中央僅を採用

*2 平成15年度美しが丘地区地盤調査報告書:各土質区分の中央値を採用

*3 泥炭性軟弱地盤対策エマニュアル(平成14年、(独)北海道開発土木研究所)

*4 防災科学技術研究所研究資料第283号p.60(2005)

⇒5 太田·後藤(1978)の換算式

*6 STZの検歴結果と浅部地盤構造モデルのN値との相関関係より算出

*7 NKNの検唇結果より想定

+8 千葉県流山市関東ローム層分布地域及び名古屋市洪積丘陸の埋土の検歴結果より想定

*9 札幌市内のS波後層結果より推定

液状化の可能性ある土質

2.2.1 浅部地盤モデルの土質分類・地盤物性(変更案)

右図は、平成19年度モデルの各層 の土質から提案土質コード毎に出 現回数を集計したものである。 平均粒径を細分化したコードに応 じて与えることで、液状化強度や非 線形特性をより適切に与えることが 可能になると考えられる。

土質コード別出現回数(H19年度モデル)

2.2.1 浅部地盤モデルの土質分類・地盤物性(変更案)

■平成19年度モデルの特徴と課題

・札幌市の特性に配慮して、火山灰、泥炭、のコードを設けている

・道路橋示方書の液状化判定では平均粒径や細粒分含有率が重要となるので、道路橋示方書でも砂の分類を詳細に した設定例を示している。しかしながら、砂を1つのコードとしている(細砂の値を採用)。

⇒砂を細分化した下表を提案(シェイク用と液状化で分けることはしない)

平成19年度モデルはN値に応じて単位体積重量を変えることを重視しているが(防災科研2005)、その影響は小さい

土質分類	コード	単位体積重量(kN/m ²) 地下水位面下	平均粒径 D50(mm)	細粒分含有率 FC(%)	S波速度	非線形特性
		地下水位面下	D30(IIIII)	1.C(70)		
粘土	1	15.0		_	太田式(粘土)	安田・山口(1985)
シルト	2	17.5	0.025	75	11	11
砂質シルト	3	18.0	0.04	65	//	11
シルト質細砂	4	18.0	0.07	50	太田式(砂)	11
細砂	5	19.5	0.15	30	11	11
中砂	6	20.0	0.35	10	11	11
粗砂	7	20.0	0.6	0	11	11
砂れき	8	21.0	2.0	0	太田式(礫)	11
盛土(砂系)·表土	9	17.0	2.0	0	太田式(礫)	11
泥炭	10	11.0	_	—	100m/s	能登・熊谷(1986) 時松・関口(2006)
火山灰	11	15.0	0.2	40	V _s =7.74*N+81.9	安田·山口?
火山灰質盛土	12	16.0	0.2	42	120m/s	千葉県流山市の例
岩盤	13	21.0	—	—	300m/s	—
LNP	0	21.0	_	_	300m/s	_

安田・山口(1995)は、平均粒径から土質特性を反映し、かつ拘束圧依存を考慮しているので、しばしば用いられる。 地下水面上の単位体積重量=地下水面下の単位体積重量-2.0(平成19年度想定と同様に道示に基づく) 道示には微細砂があるが、全地連資料にはないので、細砂に含めた 火山灰のD50、FCは土研の成果を参考に設定した

2.2.1 浅部地盤モデルの土質分類・地盤物性

【浅部地盤構造モデルのS波速度】 太田・後藤(1978)の換算式を用いて算出 (H19想定を踏襲)

Vs(m/s)=62.48·N值^{0.218}·H^{0.218}·F

H:深度(m)

F:(粘土;1.000,砂;1.073,礫;1.199)

1	質 分	類	地下水位面下の単 位重量γ ₁₂ (kN/m ³)	地下水位面上の単 位重量 _{7/1} (kN/m ³)	平均粒径 D ₅₀ (mm)	細粒分含有率 FC(%)		
表		土	17.0	15.0	80			
シ	ル	ト	17.5	15.5	0, 025	75		
砂貨	ミシノ	レト	18.0	16.0	0.04	65		
シル	小質	細砂	18.0	16.0	0.07	50		
徴	細	砂	18.5	16.5	0.1	40		
細		砂	19.5	17.5	0.15	30		
中		砂	20, 0	18.0	0, 35	10		
粗		砂	20.0	18.0	0.6	0		
砂	n	き	21.0	19.0	2, 0	0		

【山口・安田(1985)によるせん断剛性と減衰定数のひずみ依存性】

G:せん断剛性、h:減衰定数 D₅₀:平均粒径、σ_m':有効拘束圧(深さ方向に変化) 係数A₁,A₂,B₁,B₂,C₁,C₂,D₁,D₂はひずみの大きさに応じて表で与えられている。

$$\frac{G}{G_{max}} = (A_1 + A_2 \log D_{50}) \sigma'^{(B_1 + B_2 \log D_{50})}_m$$

$$h = (C_1 + C_2 \log D_{50}) \sigma'_m^{(D_1 + D_2 \log D_{50})}$$

(0.2 \le \sigma'_m \le 3kg / cm², 0.02 \le D_{50} \le 1mm)

土質分類と平均粒径・細粒分含有率(道路橋示方書の参考資料より)

3. 強震動計算

3.1	震度分布:プレート内地震(苫小牧沖)	28
3.2	震度分布:石狩低地東縁断層帯主部で発生する地震	30
3.3	震度分布:野幌丘陵断層帯で発生する地震	34
3.4	震度分布:月寒背斜に関連する断層で発生する地震	37
3.5	震度分布:西札幌背斜に関連する断層で発生する地震	40

工学的基盤上の震度分布

29

工学的基盤上の震度分布

工学的基盤上の震度分布

地表面の震度分布

工学的基盤上の震度分布

地表面の震度分布

工学的基盤上の震度分布

地表面の震度分布

33

3.3 震度分布:野幌丘陵断層帯で発生する地震

【ケース1】

3.3 震度分布:野幌丘陵断層帯で発生する地震

【ケース2】

【ケース3】

3.4 震度分布:月寒背斜に関連する断層で発生する地震

【ケース1】

3.4 震度分布:月寒背斜に関連する断層で発生する地震

【ケース2】

3.4 震度分布:月寒背斜に関連する断層で発生する地震

【ケース3】

3.5 西札幌背斜に関連する断層で発生する地震

【ケース1】

工学的基盤上の震度分布

4. 液状化の評価

4.1 液状化危険度評価手法 42

4.1 液状化危険度評価手法

液状化危険度には、下記の液状化指数(P」値)が広く用いられてきている。

 $P_{L} = \int_{0}^{20} (1 - F_{L})(10 - 0.5x) dx$ $F_{L} = \frac{R}{L} \cdots \begin{cases} F_{L} \leq 1.0: 液状化すると判定 \\ F_{L} > 1.0: 液状化しないと判定 \end{cases}$

> R:動的せん断強度比 L:地震時せん断応力比

Rの算定には、道路橋示方書(以下、道示)の方法が標準的 に被害想定でも用いられている。ただし、道示はH29改訂で Rの算定法を変更している。

4.1 道路橋示方書におけるR_Lの算定法の変更

下記のように、繰返し三軸強度比 R_L の算定式が H29改訂で変更されている。N値 ER_L の関係を右図 に示す(細砂として、 $D_{50}=0.15$ 、FC=30%の条件で 比較)。N値25以上で差が顕著になっている。 ハザードマップとしての液状化危険度に影響する のは、Nが10以下のような範囲であり、ほとんど2式 で差は生じない。

従来式

(3) 繰返し三軸強度比
繰返し三軸強度比R,は式(8.2.7)により算出する。
$ \begin{array}{ccc} R_L = 0.0882 \ \sqrt{N_a/1.7} & (N_a < 14) \\ R_L = 0.0882 \ \sqrt{N_a/1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{45} & (14 \le N_a) \end{array} \right\} \dots \dots (8.2.7) $
<u>ک</u> تر.
<砂質土の場合>
$N_a = c_1 N_1 + c_2$ (8.2.8)
$N_1 = 170 N / (\sigma_{vb}, +70) \cdots (8.2.9)$
$c_1 = 1$ (0% $\leq FC < 10\%$)
$c_1 = (FC + 40)/50 (10\% \le FC < 60\%) $ (8.2.10)
$c_1 = FC/20 - 1$ (60% $\leq FC$)
$c_2 = 0$ (0% $\leq FC < 10\%$) (0% $\leq FC < 10\%$)
$c_2 = (FC - 10)/18 \ (10\% \le FC)$
くれき質土の場合>
$N_a = \{1 - 0.36 \log_{10}(D_{50}/2)\} N_1 \dots (8.2.12)$
ここに,
R _L : 繰返し三軸強度比
N:標準貫入試験から得られるN値
N_1 :有効上載圧100kN/m ² 相当に換算した N 値
N _a : 粒度の影響を考慮した補正N値
σ _{vb} ':標準貫入試験を行ったときの地表面からの深さにおける有効上
載正 (kN/m^2)
₁ , c ₂ : 細粒分含有率によるN値の補正係数
 kL (klvin) c₁, c₂: 細粒分含有率によるN値の補正係数 FC: 細粒分含有率(%)(粒径75μm以下の土粒子の通過質量百分率)

43